projection of the C(5)C(6)C(7)-moiety (the 't-Bu' group) along the C(4)C(3) bond is given in Fig. 2(b). An average twist from the perfectly staggered position of 17.4° is observed.

The molecular strain is relieved by an overall flattening of the chair and not by adopting a 'twist' conformation. The distortion of the ring and the observed twist of the 't-Bu' group may be due to non-bonded contacts between the methyl-hydrogen atoms and ring-hydrogen atoms. Relevant contacts, smaller than 2.50 Å, are shown in Fig. 4. As far as we know this is the first 1,2-diaxially substituted cyclohexane chair thus far reported.

The C(4)C(7)O(1)O(2)-group is planar within experimental error. The atoms C(5) and C(8) are 0.155 and 0.128 Å at either side from this plane. The C=O and C(4)-C(5) bonds deviate $6\cdot2^{\circ}$ from being eclipsed [Fig. 2(c)]. This orientation is in excellent agreement with the situation usually found in aliphatic carboxylic acids (Kanters, Kroon, Peerdeman & Schoone, 1967) and with the conformation of an axial carboxyl group in cyclohexanecarboxylic acids (van Koningsveld, 1972 and references cited therein). The orientation of the methyl groups is shown in Fig. 3. The large H(82)C(8)H(83) angle (136°) cannot be conclusively explained.

The packing of the molecules in the crystal is illustrated in Fig. 4. The cyclohexane rings form strings along the [110] direction. The strings are held together by non-bonding contacts between the 2-carboxymethyl-2-propyl groups. Some short hydrogen-hydrogen distances (< 2.50 Å) are given in the figure. The author is greatly indebted to W. M. A. Peterse for his work during the implementation of the X-RAY-70 System on the IBM 360/65 and to B. van de Graaf, B. M. Wepster and H. van Bekkum for valuable discussions.

References

- ALLINGER, N. L. & FREIBERG, L. A. (1960). J. Amer. Chem. Soc. 82, 2393–2394.
- Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J. & Van-Catledge, F. A. (1968). J. Amer. Chem. Soc. 90, 1199–1210.
- ALLINGER, N. L., MILLER, M. A., VAN-CATLEDGE, F. A. & HIRSCH, J. A. (1967). J. Amer. Chem. Soc. 89 4345–4357.
- ALTONA, C. & SUNDARALINGAM, M. (1970). Tetrahedron, 26, 925–939.
- BEKKUM, H. VAN., HOEFNAGEL, M. A., DE LAVIETER, L. & VAN VEEN, A. (1967), *Rec. Trav. Chim. Pays-Bas*, 86, 1363–1371.
- GRAAF, B. VAN DE (1972). Work in progress. Delft University of Technology, Delft.
- International Tables for X-ray Crystallography (1968). Vol. III, p. 202. Birmingham: Kynoch Press.
- KANTERS, J. A., KROON, J., PEERDEMAN, A. F. & SCHOONE, J. C. (1967). *Tetrahedron*, 23, 4027–4033.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859.
- KONINGSVELD, H. VAN (1972). Acta Cryst. B28, 1189-1195.
- REMIJNSE, J. D. (1971). Thesis, Delft University of Technology, Delft.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The X-RAY-70 System. Univ. of Maryland, College Park Md.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, pp. 454–457. New York: Macmillan.
 WILSON, A. J. C. (1942). Nature, Lond. 150, 151–152.

Acta Cryst. (1973). B29, 1217

;

An X-ray Study of Two Phases of BaFeO_{3-x}

By ELIO LUCCHINI, SERGIO MERIANI AND DINO MINICHELLI

Istituto di Chimica Applicata, Università di Trieste, via Valerio 2, Trieste, Italy

(Received 4 December 1972; accepted 5 January 1973)

BaFeO_{3-x} shows several phases depending upon the iron valence. In α -BaFeO_{2.5}, which is orthorhombic, with $a = 5.911 \pm 0.003$, $b = 16.450 \pm 0.008$, $c = 11.037 \pm 0.006$ Å, the iron atom is strictly trivalent. BaFeO_{2.67}, which is hexagonal with $a = 5.683 \pm 0.002$, $c = 13.916 \pm 0.005$ Å, space group $P6_3/mmc$, is isomorphous with BaTiO₃.

Introduction

The compound $BaFeO_{3-x}$, barium orthoferrate, has been examined by many authors (Erchak, Fankuchen & Ward, 1946; Malinofsky & Kedesdy, 1954; Brisi, 1955; Gallagher, MacChesney & Buchanan, 1965; MacChesney, Potter, Sherwood & Williams, 1965; Mori, 1966) to determine its phase equilibrium diagram and structural properties. The valence of the iron atom and the crystal structure of barium orthoferrate depend upon temperature, firing atmosphere and cooling rate.

The present investigation was undertaken to ascertain the isomorphism between hexagonal BaFeO_{3-x} and BaTiO₃, suggested by Malinofsky & Kedesdy (1954), Brisi (1955), Gallagher *et al.* (1965), Mac-Chesney *et al.* (1965), and Mori (1966) and to determine the crystal data of a phase quenched at temperatures higher than 915°C and hereafter called α -BaFeO_{2.5}, with the iron atom strictly trivalent.

Experimental

The α -BaFeO_{2.5} phase was obtained by sintering pressed pellet mixtures of BaCO₃ and Fe₂O₃ in a 2:1 molecular ratio in air at 1300 °C. The sintered product was quenched in air from 1300 °C. Other samples were quenched from 950 °C and from 1100 °C respectively. Iodometric analysis of these samples showed that the percentage of Fe⁴⁺ was lower than 1%.

Fragments of the compound quenched from 950 °C were reheated in vacuum at 1100 °C for several hours and then quenched in vacuum. These fragments did not reveal the presence of Fe⁴⁺ on iodometric analysis. The reflexions from these samples were obtained with a Siemens diffractometer and a Guinier camera, using Co $K\alpha$ radiation. All the compounds exhibited the same values of interplanar spacings, which were indexed according to an orthorhombic symmetry.

The α -phase was then ground and reheated at 900°C in air for several hours and slowly cooled. The product obtained exhibited a hexagonal symmetry and a formula BaFeO_{2.67} on iodometric determination of the percentage of Fe⁴⁺. The structure of this phase, isomorphous with BaTiO₃, was determined by recording reflexions with a scintillation counter in conjunction with a pulse-height analyser, using Co K α radiation on a Siemens diffractometer.

X-ray analysis

MacChesney et al. (1965) reported the data of a phase of barium orthoferrate, with trivalent iron, and suggested it to be orthorhombic (a=5.83, b=16.38, c = 5.54 Å). However, the values of the spacing calculated with these parameters did not completely reproduce the X-ray pattern of our compound α -BaFeO_{2.5}. Duplication of the *c* axis permitted us to index all the reflexions of our pattern. The least-squares refined lattice parameters of this α -phase are: $a = 5.911 \pm 0.003$, $b = 16.450 \pm 0.008$, $c = 11.037 \pm 0.008$ 0.006 Å at room temperature (Z = 16, $D_{obs} = 5.7$ g cm⁻³ $D_{calc} = 5.77$ g cm⁻³). Systematic extinctions occurred for h00 reflexions with $h \neq 2n$ and 0k0 with $k \neq 2n$; no extinction was observed for the general reflexions hkl. The proposed space group is P2,2,2, No. 18 of International Tables for X-ray Crystallography (1952). The final data for the observed and calculated interplanar spacings are reported in Table 1.

The lattice dimensions of BaFeO_{3-x}, hexagonal phase, are a function of the percentage of Fe⁴⁺ (Mori, 1966). Our product, BaFeO_{2.67}, gave the least-squares refined lattice parameters $a=b=5.683\pm0.002$, $c=13.916\pm0.005$ Å (Z=6, $D_{obs}=5.9$ g cm⁻³, $D_{calc}=6.03$ g cm⁻³). The BaTiO₃ structure, hexagonal, space group $P6_3/mmc$ (No. 194 of International Tables for

Table 1.	Debye-Sch	herrer diagr	am of	α -BaFeO _{2.5} ,
	orthorhom	nbic phase,	at 20°	C

* For a formula BaFeO₃.

	I of a formit	and Dur CO3.	
h k l	d_{obs}	d_{calc}	I_{obs}
001	11	11.037	w
040	4.125	4.113	w
102	4.041	4.035	т
003	3.675	3.679	vw
042	3.303	3.297	vw
1 1 3	3.070	3.069	vw
123	2.928	2.920	S
210	2.906	2.909	S
150	2.876	2.879	vs
220	2 ·786	2.782	S
221	2.704	2.700	vw
061	2.653	2.660	vw
230	2.601	2.602	vw
152	2.552	2.550	vw
034	2.463	2.464	w
124	2.394	2.393	т
203	2.303	$2 \cdot 304$	w
134	2.276	2.275	vw
170	2.185	2 ·184	w
054	2.110	2.114	vw
105	2.067	2.068	m
081	2.021	2.021	т
214	2.003	2.002	vw
073	1.982	1.980	vw
1 3 5	1.935	1.935	vw
234	1.900	1.893	w
312	1.845	1.845	w
055	1.834	1.834	vw
182	1 00 1	1.833	
091	1.803	1.803	vw
205	1.772	1.769	vw
303	1.739	1.738	vw
235	1.684	1.683	т
281	1.668	1.668	w
333	1.656	1.656	w
093	1.035	1.03/	w
245	1.624	1.625	w
204	1 5 2 1	1.524	
2/4	1.531	1.531	vw
5/0	1.210	1.210	vw

Intensities: vs = very strong, s = strong, m = medium, w = weak, vw = very weak.

X-ray Crystallography, 1952), was reported by Burbank & Evans (1948). The structure of BaTiO₃ was tested as a model of BaFeO_{2.67} by means of a computer program (Smith, 1967). The final agreement index $R = \sum ||I_o| - |I_c|| / \sum |I_o|$ is 0.095. The structure of BaFeO_{2.67} is therefore considered to be of the same type as that of BaTiO₃.

In terms of the positions of the space group $P6_3/mmc$ the proposed atomic positions are:

2	Ba (1)	in (b):	0	0	$\frac{1}{4}$
4	Ba(2)	in (<i>f</i>):	$\frac{1}{3}$	$\frac{2}{3}$	z, z = 0.097
2	Fe(1)	in (<i>a</i>):	Ō	Ō	0
4	Fe(2)	in(f):	$\frac{1}{3}$	$\frac{2}{3}$	z, z = 0.845
*6	O (1)	in (<i>h</i>):	x	2x	$\frac{1}{4}, x = 0.522$
*12	O(2)	in (<i>k</i>):	x	2x	z, x = 0.836,
					z = 0.076

	0	1 ,		
h k l	d_{obs}	d_{caic}	I_{obs}	I _{cate}
002		6.958	< 1	< 1
101	4.635	4.640	3	2
102	4.023	4 ∙018	15	10
004		3.479	< 1	1
103	3.378	3.376	33	40
1 1 0	3.941	∫ 2·842	170	∫ 100
104	2.041	2 ∙841	170	<u>ک</u> ا
112		2.631	<1	<1
201	2.420	∫ 2·423	5	∫ 3
105	2.420	<u></u> 2·422	5	<u>ا</u> 4
202	2.210	∫ 2·320	21	∫ 10
006	2.519	2 ·319	21	16
114	2.199	2.201	2	3
203	2.175	2 ·174	23	22
204	2.007	2.009	36	33
211		1.844	< 1	1
205	1.8/13	∫ 1.8435	13	J 4
107	1.042	<u></u> 1∙843	15	11
212	1.708	∫ 1·797	11	J 3
116	1.130	1 .796	11	16
008		1.739	<1	1
213	1.727	1.727	7	. 9
300		1 ·641		{ 17
214	1.641	{ 1.6404	43	{ 24
108		l 1·640		Į 2
215	1.548	∫ 1∙547	8	Į 2
207	1 540	<u></u> 1∙546	Ū	Į 7
118	1.485	1.487	12	∫ 5
109	1.478	1.479		Į 4
208	1.420	J 1·422	19] 3
220	1 740	1 1.419	17	14

Table 2	2.	<i>Debye–Scherrer diagram of</i> BaFeO _{2.67} ,
		hexagonal phase, at 20°C

The significant interatomic distances are:

Ba(1)-Ba(2)	3•913 Å	Ba(2) - O(1)	2·824 Å
Ba(1)-Fe(1)	3.479	Ba(2) - O(2)	2.854
Ba(1)-Fe(2)	3.539	Fe(1)-Fe(2)	3.928
Ba(1) - O(1)	2.850	Fe(2) - O(1)	1.945
Ba(2)-Fe(1)	3.549	O(1) - O(2)	2.880

The best final data for the observed and calculated intensities and interplanar spacings are reported in Table 2.

References

BRISI, C. (1955). Ann. Chim. (Rome), 45, 431-438.

- BURBANK, R. D. & EVANS, H. T., JR (1948). Acta Cryst. 1, 330–336.
- ERCHAK, M., JR, FANKUCHEN, I. & WARD, R. (1946). J. Amer. Chem. Soc. 68, 2085–2093.
- GALLAGHER, P. K., MACCHESNEY, J. B. & BUCHANAN, D. N. E. (1965). J. Chem. Phys. 43, 516–520.
- International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
- MACCHESNEY, J. B., POTTER, J. F., SHERWOOD, R. C. & WILLIAMS, H. I. (1965). J. Chem. Phys. 43, 3317-3322.
- MALINOFSKY, W. W. & KEDESDY, H. (1954). J. Amer. Chem. Soc., 76, 3090-3091.
- MORI, S. (1966). J. Amer. Ceram. Soc. 49, 600-605.
- SMITH, D. K. (1967). UCRL-50264. 12 June 1967. Lawrence Radiation Laboratory, Livermore, California.

Acta Cryst. (1973). B29, 1219

The Crystal Structure of 1H,3H-Naphtho[1,8]thiopyrane

By Britt-Marie Lundén

Crystallography Group, Swedish Medical Research Council Unit for Molecular Structure Analysis, University of Göteborg, Fack, S-400 33 Göteborg 33, Sweden

(Received 12 December 1972; accepted 18 January 1973)

Crystals of 1*H*, 3*H*-naphtho[1,8]thiopyrane, $C_{12}H_{10}S$, are monoclinic (*P*2₁/*c*) with *a*=15·2305, *b*=9·0518, *c*=14·6491 Å and β =108·37°. There are two molecules in the asymmetric unit. No individual bond lengths deviate by more than three standard deviations from the corresponding average values. The lengths of the differently located bonds in the aromatic system agree well with those reported earlier for the naphthalene nucleus. The hetero-atom is 0.94 Å out of the plane of the rest of the molecule.

Introduction

In connexion with studies on ring systems containing sulphur and selenium atoms Biezais-Zirnis & Fredga (1971) prepared some compounds with the heteroatoms attached to a 1,8-dimethylnaphthalene nucleus. The crystal structure of 1H, 4H-naphtho[1,8]diselenepine was earlier determined at this research unit (Aleby, 1972). In this connexion it was also considered desirable to perform an X-ray analysis of 1H, 3H-naphtho-[1,8]thiopyrane (NTP, I).

Experimental

Recrystallization of NTP from petroleum spirit gave colourless crystals with a rhombic shape. The